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Overarching Motivations

eUnderstanding ocean-atmosphere interactions over the tropics is paramount to
understanding tropical climate and even climate sensitivity

eObserved has been the relatively narrow SST range over which deep convection
occurs, with the onset between 26-28°C, peak convective activity between 29.5°C-30°
[e.g. Waliser and Graham 1993; Kubar et al. (2011); Behrangi and Kubar (2012)], and
drop-off beyond these SSTs, the latter related to the formation of SST hot spots
(Waliser 1996)

*While Waliser (1996) characterized composites of monthly large-scale circulation,
cloud fields, and ocean profile temperatures the month(s) before, during and after
hot spots (defined as monthly 108km? regions in which monthly SSTs>29.75°C), less
focus was placed on individual hot spot events and the relationships between hot
spot intensity, size, and its interplay with large-scale forcing and convective strength.

*\We have the advantage of high-temporal resolution multi-sensor satellite data (e.g.
MODIS and TRMM) as well as co-located reanalysis data (ERA-Interim), to
characterize the horizontal, vertical and temporal evolution of different cloud types,
large-scale dynamics/thermodynamics, and precipitation as they relate to hot spots
from various time scales (e.g. synoptic to interannual)



Specific Objectives
eCharacterize relationships between SSTs, different convective cloud types from
MODIS, and large-scale dynamics from ECMWF reanalysis (ERA-Interim)

eUsing the Aqua MODIS joint L3 histograms, partition MODIS ice cloud types as a
function of visible optical depth t as thin cirrus, anvil, and convective core clouds

eCirrus clouds have 0<t<5, anvil clouds 5<t<30, and convective core clouds t>30 —
thus cirrus clouds have a TOA warming effect, and anvil and convective core clouds a
net TOA cooling effect (based on Kubar et al. 2007)

ePerform time-series analyses in domain-averaged 20°longitude x10°latitude boxes,
and construct latitudinally-averaged Hovmoller diagrams (between 0-10°S) to quantify
the importance of SST hot spot formation on the spawning of deep convection via
relationships with upward motion and low-level convergence

eExamine synoptic variability of SSTs, vertical cloud profiles, and large-scale dynamics
and moisture profiles vertical profiles over favorable hot spot selection regions

e|nvestigate the occurrence of a “predator-prey” type of relationship involving
convection (predator) and prey (hot spots)



MODIS Cloud Fraction

Ice Cloud Fraction, w.,,, and Rain Rates vs SSTs

Daily Cloud Fraction and w for SSTs > 25C for in 1.5x1.5-Degree Grids
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Climatology of SST Hot Spots, Clouds, and Large-Scale Circulation in
20°lon x 10°lat boxes

30 60 90 120 150 180-150-120-90 -60 -30 O 30 60 90 120150 180-150-120-90 -60 -30

30 60 90 120150 180-150-120-90 -60 -30 O 30 60 90 120150 180- 150—120 -90 -60 -30 O 30 60 90 120150 180- 150-120—90 -60 -30 O

Average Days/Year with SSTs>30C Omega at 500 hPa (mb/day) 500 hPa Specific Humidity (g/kg)
1.00 15.00 30.00 45.00 0. -10.
«Box between 160°-180° and ~0°-10°S generally has jUSt under a 2 month- duratlon with SSTs>3O c

30 60 90 120 150 180- 150-120—90 -60 -30 0 30 60 90 120 150 180-150-120 -90 -60 -30 0 30 60 90 120 150 180-150-120-90 -60 -30

30 60 90 120 150 180-150-120-90 -60 -30 O 30 60 90 120150 180-150-120-90 -60 -30 O 30 60 90 120 150 180-150-120-90 -60 -30 O
Cirrus Cloud Fraction Anvil Cloud Fraction Convective Core Fraction
0.01 0.10 0.20 0.30 0.40 0.01 0.10 0.20 0.30 0.40 0.01 0.03 0.05 0.07 0.09

eCirrus cloud fraction generally slightly larger with greater areal coverage than anvil clouds
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Time Series of wg,, and Anvil Clouds and SSTs over West & East Selection Regions

160°-180°, 0-10°S (Black: SSTs)
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*Both wg,, and Anvil CF clouds peakin
intensity/coverage just following (~15 days
to ~1 month) after peak SST hot spot,
usually at the end of each calendar year

eModerate El Nino late 2009/10 marked
by strongest hot spot of the record, with
strongest upward motion and largest
anvil cloud coverage just after SST peak



Time Series of Convective Core CF, Rain Rates, and SSTs over West & East Selection Regions
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ePulses of convective core cloud fraction
(e.g. CF>0.1) and corresponding heavy
rain rates during the decay stage of hot
spots

eLots of shorter-term convective and
precipitation variability as well
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eGreatest convective core cloud fraction
(top) and rain rates (bottom) just after the
SST hot spot peak in late 2009/early 2010
eOther pulses of convective core cloud
fraction/rain follow high SSTs (whether or
not fully-fledged hot spots)
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15-Day Hovmoller Diagrams over entire record (2002-2015) of w.,, Anvil CF with Hotspots
Superimposed (Dashed Contours: SSTs>30°; Solid: SSTs=29.8"
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Moderate El Nino (late 2009/10): eastward propagation of large and strong
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“Zoomed-In” Hovmoller Diagrams during 2008-2010

With Hot Spots Superimposed (Dashed Contours: SSTs>30°; Solid: SSTs=29.8°)
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eModerate El Nino during late 2009-early 2010; eastward-propagating hot spot with SSTs
well above 30.2° for a few months - strong upward motion, significant and organized
convection, and intense precipitation between 160°-200° during the hotspot decay stage



Zoomed in Vertical Profiles for Primary Hot Spot Region (1)
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Zoomed in Vertical Profiles for Primary Hot Spot Region (2)
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Feedbacks and “Predator-Prey” System of SSTs/Dynamics/Clouds

SST

15-Day Averaged Time Series Before and After Hotspot #3
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Quick Summary

eStrong ascent, anvil and convective cloud fraction, and high rain rates are
observed in the western and central South Pacific (0-10°S) just after
maximum SSTs associated with hot spots

eIn some cases, the strength/duration of the hot spots coincides with the
subsequent intensity of convection and precipitation

eThree independent datasets (MODIS, TRMM and ERA-Interim) are
consistent with each other in illustrating these relationships, with anvil clouds
and we,, very strongly linked to each other, as well as convective core cloud
fraction and rain rates

eHot spots generally move east to west, except during El Nino, when hot
spots are larger, more widespread, and longer-lasting

eThe predator-prey relationship between SST and convection is an intuitive
concept that illustrates the strongly coupled nature of ocean-atmosphere
system



